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Periodic pillarlike microstructures can be created from initially flat polymer films via the electrohydrody-
namic instabilities. Those patterns, however, are metastable. Our experimental observations show that the
average pillar size increases slowly after linear growth. Major coarsening events then take place over times
several orders of magnitude longer than the linear growth time. For all fill ratios, a logarithmic time depen-
dence of the average pillar size can be identified, i.e., �S�� ln t. Thicker films, however, have faster coarsening
rates than thinner films. Linear stability analysis of the pseudosteady states reveals two major coarsening
mechanisms, collision and Ostwald ripening, which can also be identified from experimental images. We then
reduce the original partial differential equation �PDE� into a pair of ODEs, which govern the interaction
between pillars due to the above two coarsening mechanisms. From this, a logarithm scaling law is obtained for
both low and high fill ratios and the coarsening rate is slower for lower fill ratios, consistent with experimental
observations. We also find that arrays with more uniform sizes tend to start coarsening later, but they coarsen
faster than more “disperse” arrays, which could be possibly utilized in experiments for controlling the onset
and speed of coarsening. The logarithm scaling in the electrohydrodynamic coarsening phenomenon, which
differs from coarsening in spinodal decomposition and dewetting of thin liquid films, is due to the significant
nonlinear effect of Maxwell stresses and geometric confinement on the disjoining pressure at both top and
bottom electrodes.
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I. INTRODUCTION

Creating micropatterns and nanopatterns of polymeric
materials on surfaces is of great interest in microdevice fab-
rication and materials engineering. In addition to photolitho-
graphic and soft lithographic techniques �1�, a nonlitho-
graphic method called the “electrohydrodynamic �EHD�
patterning” of thin polymeric films �2,3� has demonstrated
promising potential due to its low cost and versatility in
making three-dimensional patterns even without a prepat-
terned mask. Shown schematically in Fig. 1, the originally
flat and molten interface of polymer-air or polymer-polymer
bilayer fluids is destabilized by a normal electric field gen-
erated either externally or internally. The destabilization is
due to the Maxwell stress that arises at the bilayer interface
when the dielectric constants mismatch. Large scale periodic
arrays of pillars �with diameters on the order of microns� can
be easily created out of thin polymer films even under a
piece of unpatterned mask. Competition between the Max-
well stress and capillary pressure selects a characteristic
spacing between pillars, which depends on various process
parameters �4�. Features as small as 100 nm can also be
replicated faithfully with a patterned mask �3�. Those peri-
odic structures, however, are metastable. Our primitive nu-
merical studies �5� have indicated that those pillars continue
to evolve, via a cascade of merging processes among neigh-
boring pillars, toward its thermodynamically stable state,
which is one single pillar with an infinitely large period or a

period equal to the computational domain L. On one hand,
such coarsening can deteriorate the quality of the original
periodic patterns unintentionally. On the other hand, it can be
utilized purposely to change the morphology of initial pat-
terns and create novel patterns that are distinctive from those
patterns on the mask, as demonstrated in one of our recent
studies �6�. Therefore, we are motivated to study the coars-
ening dynamics in EHD patterning via both experiments and
a variety of theoretical and numerical tools. Better under-
standing of this coarsening phenomenon is desired if one
wishes to control the patterns that are formed in this highly
dynamic process.

Although coarsening during phase separation in liquid
mixtures has been studied extensively via experiments, theo-
ries, and numerical simulations �7,8�, it is also observed in
other situations, such as Marangoni convection in liquid
films �9,10� and dewetting of thin films �11–13�. These new
coarsening phenomena resemble spinodal decomposition in
morphology and mathematical formulation, but each physi-
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FIG. 1. The schematics of the experimental setup to study long-
time dynamics of the electrohydrodynamic patterning of thin poly-
mer films. Due to a mismatch of the dielectric constants ��� be-
tween air and polymer, the originally flat polymer-air interface can
be destabilized by a normal electric field applied between mask and
substrate. Arrays of pillars with a constant spacing can be generated
if the polymer is melted.
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cal system has its own unique characteristics and there is no
universal scaling law for coarsening. We hope to uncover the
unique characteristics in this system and illuminate the fac-
tors reflected in the scaling law. Our theoretical formulation
in one dimension provides qualitative agreement with two-
dimensional �2D� experimental results and reveals intriguing
uniqueness in the coarsening induced by EHD instabilities.

This paper is organized as follows. In the following sec-
tion, we describe experimental explorations on the coarsen-
ing phenomenon. In Sec. III, we introduce our theory with a
brief description on the formulation of the problem and the
derivation of thermodynamically stable and pseudo-steady-
states film profiles. Mechanisms for coarsening will be dis-
cussed in Sec. IV on the basis of perturbation studies of those
pseudosteady states. In Sec. V, we will perform numerical
simulations incorporating the coarsening modes justified.
The scaling law for coarsening can then be extracted. Experi-
mental observations will be compared with numerical re-
sults. Finally, the conclusions are summarized in Sec. VI.

II. COARSENING: EXPERIMENTAL EXPLORATIONS

To understand the long-time dynamics of the pattern for-
mation induced by the EHD instability, we designed and per-
formed real time observations with an optical microscope. A
series of polydimethylsiloxane �PDMS� films with thick-
nesses ranging from 50 to 300 nm were prepared on SiOx /Si
substrates by spin coating. The reasons for selecting PDMS
as our model polymer were twofold. First, its glass transition
temperature Tg is well below room temperature, so heating,
which is not desirable on the stage of a microscope, can be
avoided. Second, PDMSs with a broad range of viscosities

�1–20 000 000 cSt� are commercially available, allowing the
time scale of polymer flow �and coarsening�, which depends
on viscosity, to be varied over a broad range. Cyclohexane
proved to be a good solvent for spin coating uniform films of
PDMS. A glass slide coated with �150 nm ITO was used as
the mask to preserve transparency. Real time images taken
by the Olympus MX40 optical microscope with different
time intervals were then converted to black and white pixels
and analyzed with a free software IMAGEJ �14�. Several im-
portant parameters are the initial film thickness d, mask-
substrate separation H, interfacial tension �, polymer viscos-
ity �, dielectric constant of polymer �, and the externally
applied voltage U.

Figure 2 records the time evolution of a 160-nm-thin
PDMS film under a constant voltage of 17 V for 8 h. The fill
ratio defined by the ratio of initial film thickness to the mask-
substrate separation, h0=d /H, is 0.6. Black regions in the
binary images represent polymer pillars and the white corre-
sponds to the substrate. Coarsening is evident, as can be
identified visually as an increase in average size per pillar
and a decrease in the number of pillars over time. We quan-
tify the coarsening dynamics by plotting the average pro-
jected contact area per pillar �S� as function of time for dif-
ferent fill ratios in Fig. 3. The area �S� is normalized by S0
��3h0�max

2 /2, which is the area of one cylindrical pillar in a
perfect hexagonal array, whose spacing �max is set by the
prediction from the linear instability theory �4�. Similarly, the
time t is scaled by t0, the time estimated to grow full pillars
based on the same theory. For intermediate and high fill ra-
tios, the normalized pillar size increases slowly after linear

FIG. 2. Optical images illustrating different stages for the coars-
ening of 160-nm-PDMS �600k cSt� film under a constant voltage of
17 V. The fill ratio, defined by the ratio of initial film thickness to
mask-substrate separation h0=d /H, is equal to 0.6. The scale bar in
�a� represents 10 �m. FIG. 3. Coarsening data for PDMS films �100k cSt� with differ-

ent fill ratios. Logarithm dependence on time can be identified and
at later stage, coarsening becomes even slower.
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growth, due to accidental coarsening among very close pil-
lars. The major part of coarsening, however, takes place over
times several orders of magnitude longer than the linear
growth time. Straight lines in the linear-logarithm plot indi-
cate the logarithmic dependence on time, i.e., �S�� ln t with
faster rate for larger fill ratios �or equivalently, thicker films�,
which is consistent with previous reports �15�. At much later
stages, the coarsening rate becomes even slower. For the
lowest fill ratio h0=0.24, the average pillar size hardly
changes within the experimental time. Similar trends were
observed in the evolution of the number of pillars too.

III. FORMULATION OF THE PROBLEM
AND STEADY-STATE SOLUTIONS

The partial differentail equation �PDE� that describes the
height evolution of thin liquid film under a normal electric
field in one dimension can be written in the form as �4,5,16�

�h

�t
=

�

�x
	h3�P

�x

 , �1�

where pressure P consists of capillary pressure, Maxwell
stress, and disjoining pressure, P=−�2h /�x2+g�h�. For con-
venience, the Maxwell stress and disjoining pressure are ex-
pressed in dimensionless form

g�h� =
df

dh
= −

�� − 1��
2�h + �1 − h���2 +

A

�1 − h�3 −
A

h3 ,

f�h� = −
�

2�h + ��1 − h��
+

A

2h2 +
A

2�1 − h�2 . �2�

We define a length scale L= ��H3 /�0U2�1/2 �where �0 is
the permittivity of vacuum� and a time scale �
=3H3�� / ��0U2�2 so that the coordinate and time can be non-
dimensionalized through x→x /L and t→ t /�. In addition,
the film thickness, pressure, dielectric contrast, and Hamaker
constant are also in their dimensionless form, i.e., h→h /H,
P→PH2 /U2�0, �=�bottom /�top, and A→A /HU2�0. Unless
mentioned specifically, from now on all variables are re-
ferred in their dimensionless forms.

A trivial solution of Eq. �1� is h=h0. However, it is lin-
early unstable to small amplitude disturbances, as demon-
strated in the previous analyses �4,16�. Based on the disper-
sion relation, a fastest growing wave with wavelength �
=�max is predicted in good agreement with the pillar-to-pillar
spacing observed in experiments. By following the dynamics
of Eq. �1� into nonlinear regimes, we have found that the
system lingers around several other pseudosteady states with
increasing wavelength � and decreasing �P− P0� until reach-
ing the thermodynamically stable state, in which P= P0 and
�→� �5�. Therefore, the coarsening phenomenon is closely
related to the stability of the pseudosteady states. In this
section, we will obtain those states through a perturbative
analysis similar to Refs. �17,18�. In Secs. IV and V, the sta-
bility of those pseudosteady states will be assessed. Based on
which, we can identify different coarsening modes and com-
pare them with our experimental observations. A logarithmic
scaling law can then be deduced from simulations based on

those coarsening modes in good qualitative agreement with
experimental results.

To find the steady state, we set the time derivative, �h /�t
in Eq. �1�, equal to zero, yielding a constant flux h3� P /�x.
For a stationary steady state, this flux is zero and pressure is
a constant. In other words, the steady-state solutions corre-
spond to the pillar profile, in which pressure is spatially uni-
form,

g�h� − d2h/dx2 = P . �3�

There are many solutions to the above equation since g�h� is
highly nonlinear. A typical steady-state pillar profile is shown
in Fig. 4�a�. We categorize them into two types: the thermo-
dynamically stable state and pseudosteady states. Imagine
that the originally flat interface h0, a homogenous state,
evolves under the influence of the electric field into periodic
structures in which hmax and hmin deviate from h0. The first
important pseudosteady state that a system reaches has a pe-
riod conformable to the prediction of the linear stability
theory, i.e., �=�max. The profile then lingers around several
other pseudosteady states, evolving from less stable to more
stable states, characterized by a set of parameters
�P ,hmax,hmin,�
, which depends on the initial film thickness.
The destination of such coarsening is the thermodynamically

FIG. 4. �a� �Color online� A schematic of the steady-state profile
of the film in one dimension, which has a period of �=L1+L2+L3.
The profile is divided into three regimes: Core, Intermediate, and
Tail. The steady state is characterized by the equilibrium pressure P,
maximal thickness hmax, minimal thickness hmin, and period �. At
h=hmax and h=hmin, d2h /dx2 vanishes in the thermodynamically
stable state, while it is nonzero for pseudosteady states. �b� The
Maxwell construction in the plot of g�h� vs h determines both hmin

�

and hmax
� . hc corresponds to the Maxwell point. The pseudo-steady-

state pressure P approaches from the top �or bottom� to the thermo-
dynamically stable state pressure P0 if the initial film thickness h0 is
smaller �or larger� than hc.
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stable state in which P= P0, �→�, hmax=hmax
� , and hmin

=hmin
� , independent of the initial film thickness. During the

coarsening process, the difference between the pseudosteady
state and thermodynamically stable state, characterized by
P− P0, hmax−hmax

� , and hmin−hmin
� , becomes vanishingly

small. Although hmax is always smaller than hmax
� and hmin is

always larger than hmin
� , P− P0 can be either positive or nega-

tive, depending on whether the initial film thickness h0 is
thinner than Maxwell point hc or not. We will find solutions
of Eq. �3� for the thermodynamically stable and pseu-
dosteady states in Secs. III A and III B, respectively.

A. Thermodynamically stable state

The thermodynamically stable state has been discussed in
Ref. �5�, but for sake of completeness, we summarize it
briefly here. In addition, we present an asymptotic estimate
of the thermodynamically stable state, which matches nu-
merical calculations very well. Integrating Eq. �3� over h and
evaluating the integral at both hmax and hmin gives

f�hmax� − f�hmin� − P�hmax − hmin� = 0. �4�

At the thermodynamically stable state, the curvature term
d2h /dx2 in Eq. �3� vanishes at hmax and hmin. Therefore, Eqs.
�3� and �4� can be simplified as

g�hmax
� � = P0,

g�hmin
� � = P0,

f�hmax
� � − f�hmin

� � − P0�hmax
� − hmin

� � = 0. �5�

Equations �5� consist of three algebraic equations that can be
solved numerically to obtain hmax

� , hmin
� , and P0. Equivalently,

they can be found graphically via a Maxwell construction in
the plot of g�h� vs h, as shown in Fig. 4�b�. In general, the
van der Waals interaction is short ranged compared with the
electrostatic force and therefore has little effect on the period
�max. The Hamaker constant, however, has important influ-
ences on hmax

� and hmin
� , which are mainly determined by the

balance of the electrostatic and disjoining pressure near the
top and bottom electrodes. A larger �smaller� Hamaker con-
stant at the top �bottom� would result in a smaller value of
hmax

� �hmin
� �.

Equations �5� and the graphical construction remind us
what we know about the macrophase separation in classical
thermodynamics, suggesting a convenient analog. In fact,
Eq. �1� is a generalized Cahn-Hilliard-type equation �19�
with h3 playing the role of the mobility. Correspondingly, we
can define a Lyapunov functional F

F =� � f�h� +
1

2
�dh/dx�2�dx �6�

and transform Eq. �1� into

dF

dt
= −� h3��

	F

	h
�2

dx . �7�

Clearly, F is a monotonically decreasing function of time
that we have proved to correspond to the energy of the sys-

tem �5�. Here f�h� represents the �macroscopic� Helmholtz
free-energy density of a film with uniform thickness h. The
initial film h0 is absolutely unstable between two extrema in
g�h��the spinodals�, while it is bistable between hmax

� and hmin
�

�the binodals�. Any initial state within the spinodal tends to
“separate” into “two phases:” a thicker film and a thinner
film in order to minimize its free-energy density f�h�. The
term �dh /dx�2 in the Lyapunov functional F characterizes the
energy density associated with interfacial curvature, which
provides another driving force for coarsening. To minimize
this interfacial “penalty,” the structures continue evolving
until they have the largest possible period, i.e., the infinity.
Such a structure has the minimum number �one only� of
sharp transitions between the two equilibrium thicknesses.
Thus, it is preferred for thermodynamic reasons.

In the following, we derive the asymptotic solutions of the
thermodynamically stable state, i.e., the equilibrium thick-
nesses hmax

� and hmin
� , pressure P0, and inflection point hc.

Since hmax
� �1 and hmin

� �0, we can expand as

hmin
� = 0 + 	hmin

1 + O�	2� ,

hmax
� = 1 + 	hmax

1 + O�	2� , �8�

where 	 is a small parameter and let 	=A1/3 for algebraic
simplicity. Similarly, pressure P0 and hc can also be ex-
pressed as

P0 = P0 + 	P1 + O�	2� ,

hc = hc
0 + 	hc

1 + O�	2� . �9�

Substituting Eqs. �8� and �9� into Eqs. �5� and collecting
terms with the same order of 	, we can have at zero order,

P0 = −
� − 1

2
, hc

0 =
� − ��

� − 1
. �10�

At first order,

hmin
1 = � 2�

�� − 1�2�1/3

, hmax
1 = − � 2

�� − 1�2�1/3

,

P1 =
3

2
� 1

�hmax
1 �2 −

1

�hmin
1 �2�, hc

1 = −
P1�hc

0 + ��1 − hc
0�2�3

��� − 1�2 .

�11�

Figure 5 shows that the first-order approximations agree very
well with the numerical solutions of Eqs. �5�. The polymer
film approaches both mask and substrate �hmax

� →1 and hmin
�

→0� when � moves away from unity. The equilibrium pres-
sure P0 is positive when �the dielectric contrast� �
1 and
negative when ��1, through a monotonic function of �.

B. Pseudosteady states

In addition to the thermodynamically stable states derived
above, there exist a large number of other solutions that sat-
isfy Eq. �3�. We call them pseudosteady states because they
are linearly unstable to small perturbations, as we will show
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in the next section. Since the instabilities of those pseu-
dosteady states will determine the rate of coarsening, it is
important to identify and characterize them. A pseudosteady
state is represented schematically in Fig. 4�a�. Both the top
and bottom of the pillar have almost flat regions because of
very small curvatures at those extrema. We therefore divide
the pseudo-steady-state profile into three regimes: the Core,
Intermediate, and Tail with widths L1, L2, and L3, respec-
tively. The corresponding thicknesses h1 and h2, which are
close to hmax and hmin, can be chosen arbitrarily. For the sake
of convenience, we let h1=1.01hmin and h2=0.99hmax.

To obtain the profile of a pseudosteady state, one can
integrate Eq. �3� over h and evaluate the integral at hmax and
h,

1

2
	dh

dx

2

= �f�h� − Ph� − �f�hmax� − Phmax� = V�h� − V0.

�12�

Clearly, given the equilibrium pressure P and the maximal
thickness hmax, one can further integrate Eq. �12� numerically
to obtain the solution, from which the period � and initial fill
ratio h0 can then be calculated. Nonetheless, integration of
Eq. �12� in the vicinity of hmax and hmin is challenging nu-
merically because dh /dx vanishes at those extrema. In the
following, we attempt to utilize asymptotic expansions to
obtain the solutions of pseudosteady states semianalytically.

Since hmax and hmin are close to hmax
� and hmin

� , we linear-
ize f�hmax� and f�hmin� around hmax

� and hmin
� in Eq. �4�. After

some algebraic simplifications, we have

g��hmax
� �

2
�hmax

� − hmax�2 −
g��hmin

� �
2

�hmin − hmin
� �2

+ O��hmax
� − hmax�3� + O��hmin − hmin

� �3�

= �P − P0���hmax
� − hmin

� � − �hmax
� − hmax�

− �hmin − hmin
� �� . �13�

The leading-order term on the right-hand side is �P
− P0��hmax

� −hmin
� ��O�P− P0�. Therefore, a natural expansion

on hmax
� −hmax and hmin−hmin

� in terms of P− P0 would be

hmax
� − hmax = a1�P − P0�1/2 + a2�P − P0� + O��P − P0�3/2� ,

hmin − hmin
� = b1�P − P0�1/2 + b2�P − P0� + O��P − P0�3/2� .

�14�

We also linearize g�h� in Eq. �3� around hmax,

d2h

dx2 = g��hmax
� �h + P0 − P − g��hmax

� �hmax
� + O��hmax

� − hmax�2� .

�15�

Given that h�0�=hmax and h��0�=0, we can obtain the profile
in the core regime,

hmax − h � �hmax
� − hmax − �P0 − P�/g��hmax

� ��

��cosh�x�g��hmax
� �� − 1
 . �16�

Similarly, the profile in the tail regime is

FIG. 5. Comparison between the asymptotic approximation �lines� and numerical solution �dots� of the thermodynamically stable steady
state characterized by hmax

� , hmin
� , P0, and hc. The effective Hamaker constant A is kept constant.
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h − hmin � �hmin − hmin
� − �P − P0�/g��hmin

� ��

��cosh�x�g��hmin
� �� − 1
 . �17�

Notice that g��hmax
� � and g��hmin

� � are of the same order of
magnitude, e.g., g��hmax

� ��129 and g��hmin
� ��44 for �=2.5

and A=0.000 01. Combining Eqs. �13�, �16�, and �17� with
the asymptotic expansion �Eqs. �14�� will yield the pseudo-
steady-state profiles. Depending on the relative magnitude of
hmax

� −hmax and hmin−hmin
� , we can divide the pseudosteady

states into three categories.

1. High fill ratio limit

If �hmin−hmin
� �
 �hmax

� −hmax�, substituting Eqs. �14� with
a1=0 and b1�0 into Eq. �13�, to the leading order yields

hmin − hmin
� = b1�P0 − P�1/2 + O��P0 − P�� , �18�

where b1=�2�hmax
� −hmin

� � /g��hmin
� �.

Substituting Eq. �18� in Eq. �17�, we obtain

h − hmin � b1�P0 − P�1/2�cosh�x�g��hmin
� �� − 1
 . �19�

Therefore, given a pressure P or �P0− P�, one can obtain hmin
and the profile in the tail regime according to Eqs. �18� and
�19�. The width of the tail L3 is then determined by the
position of x, where h=h1=1.01hmin,

cosh�L3
�g��hmin

� �/2� = 1 +
0.01hmin

b1�P0 − P�1/2 . �20�

Similarly, substituting hmax
� −hmax=a2�P0− P�+O�P0− P�3/2

into Eq. �16� yields the profile in the core regime

hmax − h � �P0 − P��a2 − 1/g��hmax
� ���cosh�x�g��hmax

� �� − 1
 .

�21�

The width of the core L1 is determined by the position of x,
where h=h2=0.99hmax,

cosh�L1
�g��hmax

� �/2� = 1 +
0.01hmax

�a2 − 1/g��hmax
� ���P0 − P�

.

�22�

With the heights in the core and tail regimes calculated, the
profile in the intermediate regime can be obtained via nu-
merical integration of Eq. �3� with the initial conditions of
h�0�=h2=0.99hmax and h��0�=−�2�V�h2�−V0�. The width of
the intermediate part L2 is simply the length over which h
changes from h2 to h1, and the mass M2 is obtained by inte-
grating the height profile over x.

Therefore, the assumption of �hmin−hmin
� �
 �hmax

� −hmax�
provides a simple route to determine the pseudo-steady-state
profile for a given pressure P and fill ratio h0: Eqs. �18� and
�19� define the profile in tail regime, the core regime is ob-
tained from Eq. �21�, and finally solving Eq. �3� numerically
yields the intermediate regime. Once the pseudo-steady-state
profile is obtained, simple relations yield the period and fill
ratio too,

� = L1 + L2 + L3,

h0 = �L1hmax + M2 + L3hmin�/�L1 + L2 + L3� . �23�

The coefficient a2 in Eq. �21� is chosen to satisfy Eqs. �23�
for a given fill ratio h0 via several iterations.

Figure 6�a� shows a series of pseudo-steady-state profiles
for a constant fill ratio of h0=0.7 with different periods
�hence different pressure P�. The x axis has been scaled with
its period for each curve. Following the arrow’s direction,
P0− P, hmax

� −hmax, and hmin−hmin
� decrease and � increases. It

should be noted that when �
1.6�max, hmin is much greater
than hmin

� , i.e., the curvature at hmin is relatively large. This
makes the asymptotic expansion of hmin−hmin

� on P0− P in-
accurate. Therefore, we obtained those steady-state profiles
by integrating Eq. �12� directly with L3=0, i.e., essentially
no tail regime exists. When � is longer than 1.6�max, both
hmax

� −hmax and hmin−hmin
� become vanishingly small with in-

creasing period but follow different orders of P0− P. One of
the key features in Fig. 6�a� is that for high fill ratios, the
residual layer thickness hmin can be relatively thick �i.e.,
hmin
hmin

� � when the period is not too far from �max. Since
the flux depends strongly on film thickness �J�h3�, merging
of neighboring pillars can be relatively fast for high fill ratio
films, especially when the periods are close to �max. The
mass within the core and intermediate regimes, i.e., M
=L1hmax+M2 is a linear function of Q=ln�P0−P�, as shown
in Fig. 6�b�. The same relationship also applies for the width
of the pillar, defined as W=L1+L2. Therefore, Q, instead of
P, is a more appropriate process variable. In the following,
we will simply refer Q as the �reduced� “pressure.”

Before closing the discussion of the “high fill ratio limit,”
let us ponder the physical meaning of our key assumption in

FIG. 6. �a� The pseudo-steady-state profile for h0=0.7 with dif-
ferent periods �hence, different pressure P0− P�. The smallest pe-
riod is �max, the most unstable wavelength in linear stability analy-
sis. Following the arrow’s direction, P0− P decreases and �
increases. �b� The mass M and width W of the pillar �core
+intermediate regimes� are linear functions of Q=ln�P0− P�.
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this part, i.e., hmin−hmin
� �O��P0− P�1/2� and hmax

� −hmax
�O��P0− P��. Their dependence on different orders of pres-
sure P0− P indicates that the width of the core L1 is generally
much greater than the width of the tail L3 or equivalently, the
core is much “flatter” than the tail, as is mathematically evi-
dent by direct comparison of Eqs. �20� and �22� and demon-
strated clearly in Fig. 6�a�. When �
1.6�max, the tail does
not exist at all, and the width of the tail is much narrower
than the core even when �=2.5�max. Since the relative sizes
between core and tail also reflect on the fill ratio of the sys-
tem, it justifies our coinage of the high fill ratio limit.

2. Low fill ratio limit

If �hmax
� −hmax�
 �hmin−hmin

� �, substituting Eqs. �14� with
a1�0 and b1=0 into Eq. �13�, to the leading order, results in

hmax
� − hmax = a1�P − P0�1/2 + O��P − P0�� ,

hmin − hmin
� = b2�P − P0� + O��P − P0�3/2� , �24�

where a1=�2�hmax
� −hmin

� � /g��hmax
� � and b2 must be deter-

mined numerically, as discussed later. Substituting Eqs. �24�
in Eqs. �16� and �17�, we obtain the profiles in the core and
tail regimes

hmax − h � a1�P − P0�1/2�cosh�x�g��hmax
� �� − 1
 ,

h − hmin � �b2 − 1/g��hmin
� ���P − P0��cosh�x�g��hmin

� �� − 1
 .

�25�

Correspondingly, the widths of the core and tail are

cosh�L1
�g��hmax

� �/2� = 1 +
0.01hmax

a1�P − P0�1/2 ,

cosh�L3
�g��hmin

� �/2� = 1 +
0.01hmin

�b2 − 1/g��hmin
� ���P − P0�

.

�26�

The intermediate regime can then be obtained via numerical
integration of Eqs. �3� with the initial conditions of h�0�
=h2=0.99hmax and h��0�=−�2�V�h2�−V0�, and the period
and fill ratio of the pseudosteady state are calculated accord-
ing to Eqs. �23�. The coefficient b2 in Eqs. �24� is found by
iteration from Eqs. �23� for a given fill ratio h0.

Figure 7�a� depicts a series of the pseudo-steady-state pro-
files for the same fill ratio h0=0.3 with different periods.
Following the arrow direction, P− P0 decreases and � in-
creases. Although not distinguishable in the figure, both
hmax

� −hmax and hmin−hmin
� decrease and follow different or-

ders of P− P0, as indicated in Eqs. �24�. Pillars of different
mass and size have different pressures �and periods�, provid-
ing the driving force for coarsening. Similar to the high fill
ratios, both mass and width depend linearly on Q=ln�P
− P0�.

Equations �26� indicate that the tail is wider than the core,
i.e., L3
L1, so the assumption that �hmax

� −hmax�
 �hmin
−hmin

� � is more appropriate for low fill ratios. This “low fill
ratio limit” has also been assumed implicitly in analyses of

coarsening in dewetting of thin films �12,18,20�, in which the
initial film thickness is usually much smaller than the maxi-
mal height of steady-state droplets and droplets are distrib-
uted sparsely.

3. Intermediate fill ratio limit

If �hmax
� −hmax���hmin−hmin

� �, i.e., hmax
� −hmax=a1�P

− P0�1/2 and hmin−hmin
� =b1�P− P0�1/2; unfortunately, we are

unable to determine the coefficients a1 or b1 a priori. Instead,
we have

a1
2g��hmax

� � − b1
2g��hmin

� � = 2�hmax
� − hmin

� � if h0 
 hc,

a1
2g��hmax

� � − b1
2g��hmin

� � = − 2�hmax
� − hmin

� � if h0 � hc.

�27�

To determine the pseudo-steady-state profile for a given P
and h0, we first guess a value of a1 �or equivalently hmax

�

−hmax�, and then calculate b1 �or hmin−hmin
� � from Eqs. �27�.

Once hmax and hmin is known, the core, tail, and intermediate
regimes of the pseudosteady state can be calculated. On one
hand, the core’s width L1 satisfies

cosh�L1
�g��hmax

� �� = 1 +
0.01hmax

a1�P − P0�1/2 , �28�

on the other hand, Eqs. �23� provides

L1 =
L2h0 − M2 + L3�h0 − hmin�

hmax − h0
. �29�

A search for the value of a1 that gives the same core width L1
from Eqs. �28� and �29� converges within a few iterations.

Clearly, if we take the limit a1→0 �or b1→0� in Eqs.
�27�, we recover the high fill ratio limit �or the low fill ratio

FIG. 7. �a� The steady-state profiles for h0=0.3 with different
periods. The smallest period is �max=10.99, the most unstable
wavelength. Following the arrow’s direction, P− P0 decreases and �
increases. �b� The mass and width of the pillar �core and interme-
diate regimes� are linear functions of Q=ln�P− P0�.
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limit�. In this “intermediate fill ratio” regime, the widths of
the core and the tail are comparable, i.e., L1�L3, and they
have a similar “degree of flatness.” Therefore, this limit is
more appropriate for obtaining the pseudo-steady-state pro-
file of an intermediate fill ratio.

IV. COARSENING MECHANISMS

Based on the knowledge of the pseudo-steady-state pro-
files in the previous section, we implemented both theoretical
and numerical analyses of the coarsening in one dimension
to gain insight into the two-dimensional experiments. We
will identify, through the linear stability analysis of the
steady-state profiles, two coarsening mechanisms responsible
for the phenomena observed.

We first examine the linear stability of the steady states
derived in Sec. III by adding disturbances as

h�x,t� = h̄�x� + 	��x�e�t, �30�

where 	 is a small parameter. The perturbation ��x� is peri-
odic in x and has zero mean, i.e., ���x�dx=0 for mass con-
servation. Substituting Eq. �30� into Eq. �1� and retaining
only the linear terms yields

�� =
d

dx
�h̄3 d

dx
�r�x�� −

d2�

dx2 �� = L� , �31�

where r�x�= dg�h̄�
dx = dg�h̄�

dh̄

dh̄
dx .

The pseudosteady state is linearly unstable if at least one
eigenvalue for the linear operator L has a positive real part.
Since L in Eq. �31� is singular, we reformulate the linearized
equation by introducing a symmetric linear operator I,

I� =
d4�

dx4 +
d

dx
�r�x�

d�

dx
� , �32�

that can be solved numerically with better accuracy. Others

have shown that �19� the eigenvalue problem −h̄3I�=��
has the same set of eigenvalues � as the original eigenvalue

problem L�=�� with eigenfunctions related to by �
=d� /dx.

We discretize h̄�x� and solve −h̄3I�=�� numerically for
the eigenvalues and the corresponding eigenfunctions. In the
following, we examine the stability of the pseudo-steady-
state profiles with different periods � but the same fill ratio
�e.g., h0=0.7�. The smallest computational domain of interest
is L=�max with only one pillar present, as shown in Fig. 8�a�,
since �max is the fastest growing wavelength obtained from
the linear stability analysis for a flat film h=h0. Computa-
tions produce only one positive eigenvalue, �1=4.19�10−4,
and the corresponding eigenfunction is shown in Fig. 8�b�.
Comparing the unstable eigenfunction with the pseudo-
steady-state profile reveals this to be a translation mode,
which simply shifts the steady-state profile in x direction. In
fact, since the steady state is periodic, a zero eigenvalue al-
ways exists for Eq. �31� with a corresponding eigenfunction

equal to the derivative of the height profile, �= h̄��x�.
Clearly, the eigenfunction shown in Fig. 8�b� coincides with

h̄��x� in the inset. Therefore, �1=4.19�10−4 is a “numerical
approximation” of zero and the steady-state profile with only
one period in the domain is stable. In our latter studies, we
will simply ignore the eigenvalue associated with the trans-
lational mode.

Next, we study the stability of the same steady-state pro-
file but with two periods, i.e., L=2�max, and obtain two posi-
tive eigenvalues �1=0.08 and �2=4.1�10−4 with the corre-
sponding eigenfunctions �1 and �2 are plotted in Fig. 9. The
two unstable modes are qualitatively different. The positive
interior and negative boundaries in the first unstable mode �1
promote the movement of two pillars toward each other. The
effect is clear if we superimpose �1 on the steady-state pro-
file. Hence, this unstable perturbation will lead to coarsening
event via collision between neighboring pillars. The second
unstable perturbation �2 is antisymmetric. Superimposing it
with the pseudosteady state causes the right pillar to expand
at the expense of shrinkage in the left pillar. This is essen-
tially an “Ostwald ripening” phenomenon. Therefore, based
on the linear stability analysis of the steady-state profiles,

FIG. 8. �a� The steady-state profile h̄�x� with period �max in a domain of the same size. The initial film thickness is h0=0.7. �b� The
eigenfunction that corresponds to the only positive eigenvalue �1=4.19�10−4, which is a numerical approximation of zero. Inset shows the

derivative of the steady-state profile h̄��x�, which is of the same shape with the eigenfunction.
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two types of coarsening mechanisms can be identified: col-
lision and Ostwald ripening. Both modes would result in the
coalescence of neighboring pillars. But the first unstable
mode dominates at the fill ratio h0=0.7 since the correspond-
ing eigenvalue �1=0.08 is much larger than the second one
�2=4.1�10−4. For lower fill ratios, those two types of un-
stable perturbations persist, but the eigenvalue for Ostwald
ripening becomes larger than for the collision mode.

We also calculated the eigenvalues of h̄�x� with �=�max
but with different domain sizes L=n�max. Table I lists ten
largest eigenvalues for n=1 to 4. “Truly” positive eigenval-

ues always exist if L��max. Therefore, the steady-state pro-
file is linearly stable within a domain allowing for only one
period and linearly unstable when the domain contains two
or more periods. This is consistent with the analytical analy-
sis of a generalized type of Cahn-Hilliard equation �19�. The
largest eigenvalue for L=4�max is the same with the one
obtained for L=2�max and the corresponding eigenfunction
has a similar shape in Fig. 9, but with two periods. Thus, the
most unstable mode has a period twice that of the pseudo-
steady-state profile, as has been observed in spinodal decom-
positions �21�. But in our system, the “collision” mode is
dominant especially for high fill ratios, while the “collapse”
mode is the most unstable mode in spinodal decomposition
for low concentration of droplets �21�.

We can also identify these two coarsening mechanisms
from the experimental images. For example, in Fig. 10�a�,
pillars 1, 2, and 3 are well separated initially. The movement
of pillar 2 toward pillars 1 and 3 is evident between 1230s
and 2140s, finally resulting in a coarsening by collision of
three pillars. The majority of coarsening observed was
through collisions for both thin and thick films. Coarsening
by Ostwald ripening is shown in Fig. 10�b�. Those tiny pil-
lars indicated by red arrows shrink and eventually disappear
entirely. The pillar pointed out by the pink arrow also shrinks
significantly, accompanied with the growth of its neighboring
pillar. But the highlighted pillar is still present after almost
30 000 s. Overall Ostwald ripening was not observed as ex-
tensively as collisions and occurred mainly in relatively thin
films.

In addition, a third kind of coarsening mechanism is iden-
tified in Fig. 10�c�, i.e., collision-induced collisions. After
two pillars merge into a larger noncircular one, relaxation
toward a circular periphery leads to the engulfment of neigh-

TABLE I. Ten largest eigenvalues for the steady state h̄�x� �h0

=0.7� with a period of �max in different domain sizes L. The data
highlighted in gray are �numerical� positive eigenvalues and the
bold ones are numerical approximations of “zero” eigenvalues
�identified by inspecting their corresponding eigenfunctions�.

FIG. 9. Two unstable modes for the steady-state profile h̄�x� of fill ratio h0=0.7. �a� The eigenfunction �1�x� with its corresponding

eigenvalue �1=0.08 and �b� its superimposition with h̄�x�. �c� The eigenfunction �2�x� with its corresponding eigenvalue �2=4.1�10−4 and

�d� its superimposition with h̄�x�. The factor 4 is chosen to magnify the effect of perturbation so that it can be recognized easily in the figure.
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boring pillars that are close enough. Therefore, a pillar expe-
riencing one collision could have a higher probability for a
subsequent collision, especially, in a close-packed regime.

V. SCALING LAW

After identifying different coarsening mechanisms, in the
following, we will reduce the original PDE �1� into a pair of
ODEs that describes the interaction between pillars and pro-
vides a basis for simulating the coarsening process. The
method was first outlined by Glasner and Witelski �12,20� in
the study of long-time coarsening of dewetting droplets.
Since coarsening is a slow process, it is appropriate to select
a new time scale �=	t and 	�O�hmin

3 � is a small parameter.
The pseudosteady state of each individual pillar is character-
ized by its center of mass X��� and “pressure” Q���
=ln�P���− P0�. We assume that both X��� and Q��� vary
slowly with time, so we can approximate the thickness pro-
file as

h�x,t� = h̄�x − X���,Q���� + 	��x,�� + O�	2� . �33�

Substituting Eq. �33� into Eq. �1� yields

−
� h̄

�x

dX

d�
+

� h̄

�Q̄

dQ

d�
=

�

�x
�h̄3 �

�x
�r�x�� −

�2�

�x2�� = L� ,

�34�

with the boundary conditions J+=�−h3 �P
�x �x=L/2 and J−

=�−h3 �P
�x �x=−L/2, assuming the center of the pillar is located at

the origin of the domain −L /2
x
L /2. The existence of a
solution � for the inhomogenous equation �34� is governed
by the Fredholm alternative theorem �12�, i.e., the solution of
L�= f exists if and only if �f ,v�=0 for all v, in which L†v
=0 and L† is the adjoint operator of L. The adjoint of the
singular operator L is

L†v = �r�x� −
�2

�x2�� �

�x
	h̄3�v

�x

� , �35�

and the null space of L† is spanned by a pair of eigenfunc-
tions

v1�x� = 1 and v2�x� = �
0

x h̄�x�� − hmin

h̄�x��3
dx�. �36�

Taking the inner product of the left-hand side of Eq. �34� and
vi�x� provides two governing equations for the time evolu-
tion of the ith droplet’s position and pressure,

dXi

dt
= − CX�Qi��Ji+1,i + Ji,i−1� ,

dQi

dt
= − CQ�Qi��Ji+1,i − Ji,i−1� , �37�

where CX is the drift coefficient

CX�Qi� =
�−W/2

W/2 dx�h̄i − hmin,i�/h̄i
3

2�−W/2
W/2 dx�h̄i − hmin,i�2/h̄i

3
� 0, �38�

CQ�Qi� is the mass-exchange coefficient

CQ�Qi� = ��
−W/2

W/2

dx � h̄i/�Qi�−1

= � �Mi

�Qi
�−1


 0, �39�

and Ji+1,i is the flux between the ith and �i+1�th pillars

Ji+1,i = − h3�P

�x
� − hmin

3 Pi+1 − Pi

�Xi+1 − Wi+1/2� − �Xi + Wi/2�

=− hmin
3 exp�Qi+1� − exp�Qi�

�Xi+1 − Wi+1/2� − �Xi + Wi/2�
. �40�

Equations �37� imply that the net sum of the fluxes from both
sides of the ith pillar determines its lateral motion, while the
difference between fluxes controls the extent of the pillar’s
growth.

With the governing equations for the positions and masses
of pillars, we can simulate coarsening among a large num-
bers of pillars and monitor the time evolution of them by
integrating Eqs. �37�. We construct a one-dimensional array
of N0 pillars located in the domain 0
x
K with K is cho-
sen to accommodate N0 pillars with average spacing �. The
mass and position of each pillar are random numbers from

normal distributions with mean of mass M̄ =h0K /N0 and pe-

riod �̄=�. The standard deviation � can be varied. The ith
pillar is characterized by its “pressure” Qi, the minimal
thickness hmin,i, location Xi, width Wi, and mass Mi, as the
initial conditions for Eqs. �37�. The drift and mass-exchange

FIG. 10. �Color� Optical images showing three different kinds of
coarsening mechanisms: �a� collision �100-nm-PDMS film with a
viscosity of 100k cSt; �b� Ostwald ripening �100-nm-PDMS film
with 10k cSt viscosity�; �c� collision-induced collisions �160-nm-
PDMS film with 600k cSt viscosity�.
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coefficients can be obtained numerically as a function of
pressure, from the pseudo-steady-state profiles that we have
obtained in Sec. III B. We then integrate Eqs. �37� numeri-
cally to follow Xi�t� and Qi�t�. Coarsening events occur be-
tween two pillars due to either of the two mechanisms: col-
lision and Oswald ripening. First, two pillars collide when
their tails overlap such that

��Xi+1 − Wi+1/2� − �Xi + Wi/2�� � 	 . �41�

At this point, the denominator in Eqs. �40� becomes very
small and the local flux is very large so pillars i and i+1 start
to merge. Since the time for merging is much shorter than the
time scale of coarsening, we consider it to happen instanta-
neously. Once Eq. �41� is satisfied, we eliminate the two
“old” pillars and create a new one with mass the sum of the
two merging ones and location at the center of mass of both
pillars. Integration of the ODE system restarts for the re-
maining N−1 pillars. The second mechanism for coarsening
is the collapse of one pillar, i.e., when its mass is reduced to
a critical value, its mass is absorbed quickly by the neigh-
bors. We then eliminate that pillar and transfer all the mass to
the neighbors as a coarsening event.

Figures 11�a� and 11�b� show the simulation results for
coarsening at two different fill ratios h0=0.3 and h0=0.6. In
both cases, the initial number of pillars is N0=500 and the
initial pillar sizes follow a normal distribution with mean

mass M̄ =h0K /N0. The standard deviation to mean mass

� /M̄ is 0.05 for both cases. For h0=0.3, the average spacing

between pillars �̄ is equal to �max at time zero. For the high

fill ratio h0=0.6, �̄ is set equal to 1.44�max initially because
hmin is too large for �=�max, violating our assumption that
hmin is small. Clearly, both the average pillar area and the
number of pillars follow with straight lines that scale with
logarithm of time, in consistency with our experimental ob-
servations. Moreover, the coarsening rate is slower for
smaller fill ratio, which captures another key feature in our
experimental results. Similar effect has also been observed in
fully nonlinear numerical simulations �5,22�. The ratio of
coarsening due to collision and Ostwald ripening are also
quite different for low and high fill ratios. Collision is the
main cause at coarsening for high fill ratios, while Ostwald
ripening is dominant at low fill ratios.

Interestingly, the coarsening rate also depends on the ini-
tial distribution of pillar sizes. As illustrated in Figs. 12�a�
and 12�b�, coarsening starts later if the initial standard devia-
tion in pillar size is smaller. This is understandable because
the “polydispersity” in initial masses also relates to the poly-
dispersity in pressures. Since both motion and growth of pil-
lars depend on pressure differences, a narrower size distribu-
tion will make coarsening more difficult to start. We
analyzed our experimental results for the size and circularity
distributions of individual pillars at the early stage of coars-
ening for two different fill ratios, as shown in Figs.
12�c�–12�f�. Clearly, lower fill ratio tends to engender more
uniform pillar arrays and the array has more population of
cylindrical shapes than in high fill ratio. Therefore, the lower
coarsening rate at low fill ratios can be attributed to at least
two aspects: �1� the distance between pillars is longer and �2�
the array of pillars is more uniform in sizes and shapes.
Ideally, a “monodisperse” array of pillars would take an in-
finitely long time to coarsen. However, once coarsening
starts, the system with lower polydispersity coarsens faster
�though still following a logarithm scaling�, while more
“polydisperse” arrays tend to coarsen gradually. This could
provide useful insight for controlling both the onset and rate
of coarsening in experiments.

It is interesting to note that the logarithmic coarsening in
the electrohydrodynamic patterning is different from spin-
odal dewetting of thin liquid films on substrates, where
power laws were observed experimentally �11� and predicted
theoretically �12,23�. In most of the spinodal dewetting stud-
ies, an individual droplet sitting on substrate is unbounded
from top and its pressure can be easily changed by changing
the curvature at the top surface of the droplet. So the driving
force, i.e., the pressure difference between neighboring drop-
lets can be large if they differ a lot on the top surface curva-
tures. Logarithmic scaling was predicted, however, for de-
wetting of large droplets, where gravity makes the top
surfaces flat and mesalike �18�. The “confinement” of drop-
let’s top surface by gravity makes pressure difference be-
tween neighboring droplets much smaller, hence, slowing
down the coarsening process. In the current study, the poly-
meric pillars are also bounded by both top and bottom elec-
trodes and the confinement effect of disjoining pressures near
both electrodes has the similar effect of gravity to the large

FIG. 11. ��a� and �b�� Simulation results for coarsening at two different fill ratios. The initial pillar sizes follow a normal distribution with

the ratio of standard deviation to mean mass being constant: � /M̄ =0.05. S0 corresponds to the initial �averaged� surface area of one
individual pillar and N0 is the initial number of pillars �500�.
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dewetting droplets. Therefore, the coarsening kinetics is
similar for both cases but different from unbounded spinodal
dewetting. At early stages, spinodal dewetting typically pro-
duces arrays of droplets with much larger size variations than
electrohydrodynamic patterning, the high polydispersity in
terms of droplet size could be another reason why coarsening
in spinodal dewetting tends to be faster.

Although our one-dimensional theory captures essential
aspects of experiments, 2D structures, the extension of the
current study to two-dimensional models will shed lights on
other intriguing questions related to coarsening. For ex-
ample, for fill ratios that are high enough, coarsening of pil-
lars will finally lead to a continuous matrix with circular
holes �15,22�, which corresponds to the thermodynamically
stable state �5�. This phase inversion driven by coarsening
can only be studied in 2D models. Since the geometric con-
finement of disjoining pressure has significant effects on
coarsening kinetics, it will be interesting to extend the cur-

rent study to confined spinodal dewetting �24� and compare
the coarsening kinetics with unbounded cases.

VI. SUMMARY

We have examined the long-time behavior of the EHD
instability at the interface between two insulating fluids. This
study is motivated by both experimental and numerical evi-
dences that the periodic structures formed at early stages are
not stable but tend to merge with each other at later stages.
Our microscopic observations clearly show three distinct
stages of the coarsening dynamics. In the first stage, the av-
erage pillar size increases slowly due to occasional merging
between neighboring pillars, while the overall pattern re-
mains almost unchanged. Most coarsening takes place during
the second stage characterized by a logarithmic relationship
between the average pillar size and time. In the final stage,
coalescence becomes much slower presumably because the

FIG. 12. ��a� and �b�� Coarsening at the same fill ratio �h0=0.3� but with different initial “polydispersity,” i.e., �=0.01M̄, 0.05M̄, and

0.1M̄. ��c�–�f�� Analyses of experimental results at the initial stage �array of pillars� of coarsening of PDMS films �100k cSt� at different fill
ratios. ��c� and �d�� Histograms of the individual pillar area. ��e� and �f�� Histograms of the circularity of individual pillars, where circularity
is defined as C=4��area /perimeter2.
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ultra thin residual layer between pillars renders further merg-
ing very slow. The effect of fill ratio or initial film thickness
on the coarsening dynamics is also significant.

To understand the coarsening phenomenon, we first iden-
tify the solutions of thermodynamically stable and pseu-
dosteady states. We then employ perturbative methods to
study the stability of the pseudosteady states, which reveals
two different coarsening mechanisms: collisions between pil-
lars and Ostwald ripening. These can also be identified from
the experiments. We then reduced the original PDE into a
pair of ODEs that govern the interaction between pillars
through the two coarsening mechanisms. From simulations
governed by these evolution equations, a logarithm scaling
law is obtained for both low and high fill ratios with a slower
coarsening rate for lower fill ratios. Both are consistent with
experimental observations. We have also found that the
coarsening depends on the initial size distribution of the pil-

lar array. More uniform arrays tend to start coarsening later
but then coarsen faster than more “disperse” arrays. This
finding could be utilized in experiments for controlling the
onset and speed of coarsening.

This coarsening phenomenon, in morphology, resembles
coarsening in spinodal decomposition of a binary mixture
and dewetting of thin liquid films. The mechanism, however,
differs qualitatively due to the significant effect of Maxwell
stresses and geometric confinement on the disjoining pres-
sure at both top and bottom electrodes, which leads to the
logarithm scaling law, as we have found both experimentally
and numerically.
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